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Abstract. We present an atomistic simulation method for calculating the defect formation free
energy and defect volume using lattice dynamics. The periodic simulation methods have been
extended to allow charged systems with subtraction of defect–defect interactions to be studied
routinely. This allows constant pressure minimization to be used rather than the more traditional
constant volume method, allowing direct calculation of defect formation volumes and defect free
energies or enthalpies rather than lattice energy.

We have applied this method to the calculation of enthalpies and volumes of vacancy and
Schottky formation as a function of pressure and to the solution of Ca in the lower mantle mineral
MgSiO3 perovskite. The results indicate that as the pressure increases the defect volume of vacancy
formation decreases and above approximately 50 GPa this decrease actually leads to a reduction
in the enthalpy of formation rather than the expected increase as the pressure is increased further.
The total Schottky enthalpy however continues to increase as a function of pressure although the
rate of change of energy decreases with increasing pressure.

The solution of Ca with MgSiO3 perovskite is shown to be very unfavourable and indicates
that Ca will form its own CaSiO3 perovskite phase within the conditions expected within the lower
mantle. This result is important when considering the amount and location of trace elements such
as Al within the mantle that have been shown to be preferentially located within CaSiO3 perovskite
rather than MgSiO3 perovskite.

1. Introduction

The physical properties of ceramics and minerals including electronic and ionic conduction,
diffusion and creep are highly dependent on the defects they contain including point defects,
dislocations and grain boundaries (Catlow and Stoneham 1989, Catlow 1993, Sakaguchi
et al 1992, Duffy 1986). Atomistic simulation has been used as a complementary tool for
understanding the structure and properties of such defects due to the difficulty of probing them
experimentally. These simulations have concentrated on point defects in ceramics (Tomlinson
et al 1989, Islam and Baetzold 1992, Pryde et al 1995) although simulations have also been
performed on surfaces (Watson et al 1996), grain boundaries (Harris et al 1996, 1999), hetero-
interfaces (Sayle et al 1994) and dislocations (Watson et al 1999).

An understanding of the rheological behaviour of the Earth’s lower mantle is required to
model mantle dynamics. However, there is little information regarding the creep behaviour
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of lower mantle materials (primarily (Mg, Fe)SiO3 perovskite and (Mg, Fe)O) at mantle
conditions. Experiments of rheological behaviour on mantle materials are at present beyond
the limits of technology due to the high temperatures and pressures required to stabilize
(Mg, Fe)SiO3 perovskite. Therefore alternative methods such as analogue studies have been
used such as the creep experiments on the perovskites CaTiO3 and NaNbO3 performed by
Wright et al (1992).

Solid state creep is a process that is be highly dependent on the ability of the ions to
diffuse (Poirier 1985), which in turn depends on the free energy of defect formation and is thus
amenable to the methods used to study defect formation in ceramics. Wall and Price (1989)
calculated defect formation in MgSiO3 perovskite while Wright and Price (1993) performed
constant volume computer simulations on the formation and diffusion of defects in SrTiO3,
CaTiO3 and MgSiO3. We have also performed a previous study of defect formation in MgO
(Mills et al 1991), which indicated that the defect formation volume is important and highly
dependent on pressure, an effect not previously modelled and difficult to model in the constant
volume methods previously employed.

Defect formation energies will also control the location of trace elements within the lower
mantle. Revised estimates of the solar elemental abundance of calcium, indicate a higher
value than previous determinations (Anderson and Bass 1984, Bass and Anderson 1984). It is
thought to be present in the mantle and the most likely Ca bearing phase is CaSiO3 perovskite
(Ringwood and Major 1969, Tamai and Yagi 1989, Mao et al 1989). This phase may be an
important deposit of trace elements within the mantle as recent studies have shown partitioning
of rare earth elements to CaSiO3 in preference to MgSiO3 (Kato et al 1988). However, this
relies on the assumption that CaSiO3 exists as a separate phase within the lower mantle, and
yet there is little information regarding its physical and chemical properties, largely due to the
high pressure required to stabilize it. Some success has been achieved by Mao et al (1989)
who studied the crystal structure up to 134 GPa. More recently Wang et al (1996) have studied
the pressure–volume relationship of CaSiO3 perovskite up to 13 GPa using more accurate
methods.

Computer modelling of the CaSiO3 perovskite phase was attempted in the late 1980s
by Wolf and Bukowinski (1987) and by Hemley et al (1987) using the potential induced
breathing (PIB) calculations. Neither of these obtained a reasonable equation of state (EOS)
as highlighted by Sherman (1993), who performed an ab initio periodic Hartree–Fock study,
which provided excellent agreement with the data of Mao et al.

Wentzcovitch et al (1995) and Warren et al (1998) have performed density functional
theory (DFT) studies using the local density approximation (LDA), pseudopotentials and a
plane wave basis set on both MgSiO3 perovskite and CaSiO3 perovskite. They found that
CaSiO3 perovskite is cubic from 0 to 150 GPa in agreement with Sherman. Stixrude et al (1996)
and Chizmeshya et al (1996) employed the linear augmented plane wave (LAPW) technique
and the LDA to calculate both the EOS and the phonon frequencies. Both of these studies, in
contrast to both the above calculations, indicate that the cubic phase of CaSiO3 perovskite will
be dynamically unstable at all pressures. CaSiO3 perovskite cannot be stabilized at ambient
pressures (Wang and Weidner 1994) and so dynamical instabilities at low pressure may be
expected. Wang et al (1996) have examined the phase boundary between Ca2SiO4 + CaSi2O5

and CaSiO3 perovskite indicating a phase boundary along the line 11 GPa, 1500 K and 9 GPa,
600 K. At higher temperature and pressures CaSiO3 perovskite was found to be cubic in
agreement with the studies of Wang and Weidner (1994) and Liu and Ringwood (1975).

This paper will present an atomistic simulation method for studying defect formation as a
function of temperature and pressure. We have used this technique to study the thermodynamics
of defect formation in MgSiO3 perovskite which will be a vital step in the mechanism of
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Table 1. Parameters of the potential model.

Species Charge ij Aij (eV) rij (Å) Cij (eV Å6)

Mg +2 Mg–Oshell 1 233.8032 0.294 53 0.0
Ca +2 Ca–Oshell 1 090.4 0.340 0 0.0
Si +4 Si–Oshell 1 383.735 0.320 52 10.661 58
Oshell −2.848 Oshell–Oshell 22 764.0 0.149 0 27.88
Ocore +0.848 Ocore–Oshell Core-shell spring constant k = 74.92 eV Å2

Oshell–Si–Oshell three body spring constant k = 2.097 24 eV rad−1, short range cutoff 12 Å.

ion transport important in such mantle processes as convection, ionic conductivity, thermal
conductivity and creep but also has direct applications in the calculation of defect free energies
in ceramics. We will focus on the formation of Schottky and pseudo-Schottky defects in
MgSiO3 and the inclusion of calcium in the lower mantle, either dissolved within MgSiO3 or
as a separate CaSiO3 perovskite phase.

2. Atomistic simulation techniques

The atomistic simulation method employed is based on the Born model of solids in which
the system is modelled by summation of individual interactions defined by an interatomic
potential. These interactions include coulombic and two body, short range interactions, to
model electron cloud repulsion and van der Waals attractions. In addition a three body term is
used to infer directionality on the two body bonding around the Si and the shell model of Dick
and Overhauser (1959) describes the electronic polarizability of the oxygen ions.

The potential parameters used for the MgSiO3 (PVTHB1) are shown in table 1 and were
developed by Wall and Price (1989) to model MgSiO3 perovskite. In addition a potential
model was required to allow the calculation of calcium defects, the potential parameters for
which are also included in table 1 and were derived by Lewis and Catlow (1984).

The simulations were performed with the atomistic free energy minimization code
PARAPOCS (phonon assisted relaxation applied to the prediction of crystal structure) (Parker
and Price 1989, Watson et al 1997). Periodic boundary conditions are assumed and the cell
relaxed to minimum free energy, given by

G = Ulatt + PV + Uvib − T Svib

where Ulatt is the internal lattice energy, P is the pressure, V is the cell volume, Uvib is the
vibrational energy (including zero point energy), T is the temperature and Svib is the vibrational
entropy.

In a previous study (Mills et al 1991) we observed problems due to defect–defect
interactions in the calculations arising from the periodic boundary conditions employed. The
sum of the coulombic energy required a neutral cell; this coupled with the periodic boundary
conditions meant that each cell contained two defects, to maintain charge neutrality, and that
these interacted with each other and their images in the periodic summation. To reduce these
effects a number of program developments have been made to allow the simulation of single
charged point defects with subtraction of defect–defect interactions allowing simulation close
to infinite dilution to be obtained.

The Ewald method, which is used to sum the coulombic terms, assumes that the cell is
charge neutral; however a small modification allows charged cells to be considered. This is
treated by assuming there is a counter-charge which is distributed evenly throughout the cell
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Table 2. Defect energy, charge correction and defect–defect interaction energy as a function of
supercell size.

Cell size Coulomb Defect–defect
Number of ions V (Mg) correction interaction

Number of cells (cores) (eV) (eV) (eV)

1 1 1 20 24.82 1.94 −1.04
1 1 2 40 25.31 1.22 −0.40
1 2 1 40 25.43 1.22 −0.74
2 1 1 40 25.56 1.22 −0.75
2 2 2 160 25.91 0.49 −0.52
3 2 2 240 25.97 0.37 −0.45
3 3 3 540 26.00 0.22 −0.35
Cascade 436a 26.07

a Number of ions (cores) in region 1.

and is the g = 0 term for the reciprocal space summation (Leslie and Gillan 1985) given by

−πQ2

2V η

where Q is the total charge on the cell, V is the cell volume, and η is the Gaussian half
width used in the Ewald sum. In addition the coulombic interaction energy from defect–defect
interactions can be calculated (see Allan et al 1989) as

def ects ′′∑
i,j

(
qiqj

2rij · ε
R

)

where ′′ indicates the summation does not include pairs of defects within the unit cell, rij is
the distance between defects i and j and ε

R
is the static dielectric constant matrix.

The extensions used in this study are, firstly, the use of the vector product of the distance
between defects and the static dielectric matrix allowing symmetries other than cubic the
be used, and, secondly, that these interactions are calculated during the simulation and not
applied retrospectively (Allan et al 1989). The forces due to defect–defect interactions are also
calculated and subtracted and are therefore excluded from affecting the final configuration and
energy. Defect clusters can still be considered as the interactions are only subtracted between
until cells but in this study we have only considered isolated defects.

The method used to remove defect–defect interactions is not perfect. It only subtracts
coulombic interactions and thus short range effects are still included. In addition if the defect
is too close to its images the forces and thus the resulting energy and configuration will be
altered by interaction with the perturbed lattice around the defect image. We have thus studied
the effect of supercell size on the simplest defect in MgSiO3 perovskite (magnesium vacancy)
to assess the size of supercell required for further calculation. The energy of the magnesium
vacancy was calculated (neglecting temperature) with increasing cell size up to a 3 × 3 × 3
supercell of 540 atoms and are compared to the same defect calculated at infinite dilution using
the CASCADE program (Leslie 1981). CASCADE, which has previously been used to study
point defects in perovskite (Wall and Price 1989, Wright and Price 1993), uses a two region
Mott–Littleton type approach (Catlow 1989) at constant volume and thus for the purposes of
the test the volume of the supercell was held fixed. Table 2 shows the variation in the vacancy
energy as a function of supercell size and also includes the two correction terms, which show
that they are not insignificant although they do cancel each other out to some degree. The results
show that the defect energy tends toward the CASCADE energy with increasing supercell size
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Table 3. Vacancy formation enthalpies as a function of pressure.

Pressure (GPa) V (Mg) (kJ mol−1) V (Ox) (kJ mol−1) V (Si) (kJ mol−1)

0 2501 2277 9079
6 2507 2276 9121

10 2509 2274 9145
30 2510 2269 9223
50 2499 2252 9275
80 2458 2216 9276

100 2419 2188 9250
150 2289 2094 9098

Figure 1. Variation in PδV of vacancy formation as a function of pressure for silicon (square),
magnesium (hourglass) and oxygen (circle).

with the largest (3 × 3 × 3) being the closest. Due to the large size of this supercell and to
allow as many calculations to be performed as possible the supercell of size (2 × 2 × 2) was
chosen as it represents a manageable size while giving good accuracy.

3. Vacancy formation energies and volume

In our previous study of MgO (Mills et al 1991) the defect formation energy was only weakly
dependent on temperature while being strongly dependent on pressure; therefore we have
neglected the temperature component of the free energy, and performed static calculations
allowing more extensive studies to be conducted.

In the intrinsic defect region the concentration of impurities is low and defect processes
are dominated by the defect formation energy. We have therefore calculated the defect energies
as a function of pressure from 0 to 150 GPa, shown in table 3. We have only included a single
oxygen vacancy energy because, although MgSiO3’s orthorhombic nature gives rise to two
distinct oxygens, the vacancy formation energies are within 1 kJ mol−1.

The oxygen vacancy has the lowest enthalpy of formation across the whole pressure range
and is made up of two components, the lattice energy and the PV terms. The total defect
formation energy decreases with increasing pressure. This effect is due to a reduction in the
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(a) (b) (c)

Figure 2. Variation in energy (square) and enthalpy (circle) as a function of pressure for (a) oxygen,
(b) magnesium and (c) silicon vacancy formation.

activation volume of defect formation as a function of pressure (figure 1), which outweighs
the increase in lattice energy (figure 2(a)). This is an important point as previous calculations
(Wall and Price 1989, Wright and Price 1993) have used a constant volume approach which
cannot take into account the volume term shown in figure 1.

The same effect can be seen in the magnesium vacancy. This is slightly less energetically
favourable than oxygen (table 3) and shows a positive δV at low pressure, causing an increase
in the enthalpy of defect formation over the lattice energy of defect formation. However, at
high pressure similar to the lower mantle, the δV term becomes negative (figure 1) and the
enthalpy of defect formation reduces as a function of pressure (figure 2(b)). This change is due
to the high hydrostatic pressure overcoming the electrostatic repulsion set up by the magnesium
vacancy and can be seen by the changes in bond lengths. At 0 GPa the Mg–O bond length
is 2.20 Å and on introducing a vacancy the distance between the vacant site and an adjacent
oxygen increases to 2.37 Å as a result of electrostatic repulsion between the vacancy (effective
charge −2) and the oxygen ions (charge −2). At 100 GPa the effect is reversed. The Mg–O
bond distance is 2.04 Å and the vacancy–oxygen distance is 2.00 Å, indicating that at high
pressure it is the short range component of the interaction which dominates the repulsion.

The most unexpected result is that of the enthalpy of vacancy formation for the silicon.
This shows a high formation enthalpy (9079 kJ mol−1 at 0 GPa) and increases with pressure
due to both an increase in lattice energy (figure 2) and a positive volume change (figure 1)
reaching (9275 kJ mol−1 at 50 GPa). However, at around 70 GPa the δV rapidly changes
to a negative value, causing the enthalpy of vacancy formation to rapidly reduce, reaching
9098 kJ mol−1 at 150 GPa. The effect of pressure on the enthalpy is therefore dominated by
the lattice energy at low pressure (figure 2(c)) and the PδV term at high pressure (figure 1).

The silicon vacancy is potentially the hardest to calculate due to the large charge and
volume changes which accompany vacancy formation. Due to these effects the silicon vacancy
will be the least accurate and will potentially require larger supercells for accurate results. We
have therefore performed silicon vacancy calculations for a 3 × 3 × 3 supercell (540 cores) to
check the observed reduction in the enthalpy of formation. These show good agreement with
the smaller supercell (9094 kJ mol−1 at 0 GPa, 9303 kJ mol−1 at 50 GPa, 9297 kJ mol−1 at
100 GPa and 9156 kJ mol−1 at 150 GPa) with the closest agreement at 0 GPa where the cell
volume, and thus the defect–defect distance, is greatest.
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4. Schottky defects in MgSiO3

Enthalpies are calculated for isolated defects and the Schottky energies simply obtained by
summation, assuming the ions are moved to the surface, i.e.

#Hf(MgSiO3) = (E′ − E)Mg + (E′ − E)Si + 3(E′ − E)O + E′′
(MgSiO3)

where E represents the enthalpy (lattice energy and PV terms) of the pure system, E′ indicates
the enthalpy of the defective lattice and E′′ is the energy of the removed unit. In addition the
so called pseudo-Schottky defects created by removing a charge neutral but not necessarily
stoichiometric unit have been calculated, i.e.

#Hf(MgO) = (E′ − E)Mg + (E′ − E)O + E′′
(MgO)

#Hf (SiO2) = (E′ − E)Si + 2(E′ − E)O + E′′
(SiO2)

.

The enthalpy for the removed phase is obtained by performing calculations using the
same potentials. For MgO this is periclase but for SiO2 this would involve calculation of
α-quartz/coesite/stishovite depending on the pressure. However, since MgSiO3 perovskite
is a high pressure phase we have used is our calculations the high pressure phase of SiO2

(stishovite).
The variation in the lattice energy component of the Schottky defect energy is shown in

figure 3(a). This indicates that, as in previous calculations employing the embedded atom
approach (Wall and Price 1989, Wright and Price 1993), the Schottky formation lattice energy
increases as a function of pressure. The most stable defect is the MgO pseudo-Schottky which
at 345.7 kJ mol−1 is 62.7 kJ mol−1 more stable than the full Schottky and 132.8 kJ mol−1 more
stable than the SiO2 pseudo-Schottky at 0 GPa. The formation energy rises to 505.4 kJ mol−1

at 100 GPa (103.6 and 201.8 kJ mol−1 more stable than the full Schottky and SiO2 pseudo-
Schottky, respectively) and 633.5 kJ mol−1 at 150 GPa (111.6 and 215.9 kJ mol−1 more
stable). This compares with the recent calculations of Wright and Price (1993) in which the
MgO Schottky has a defect formation energy of 353.6 kJ mol−1 at 0 GPa (45.4 kJ mol−1 more
stable than the full Schottky and 115.9 kJ mol−1 more stable that the SiO2 pseudo-Schottky)
and 635.6 kJ mol−1 at 125 GPa (205.1 and 339.4 kJ mol−1 more stable).

The effect of including the PV term in the energy of the Schottky is illustrated by Schottky
formation enthalpy (figure 3(b)). This shows that due to a positive defect volume (figure 3(c))
the Schottky formation enthalpy is more positive that the lattice energy component. At low
pressure the Schottky enthalpy increases rapidly above the lattice energy as a function of
pressure. This is caused by a rapid increase in the Schottky PV term (figure 3(d)) at low
pressure caused by the large Schottky formation volume (figure 3(c)). The effect does not
increase rapidly beyond 50 GPa because the increasing pressure causes a rapid reduction in the
formation volume, which reduces the effect of increasing pressure on the PV term. This effect
is so marked that the PV contribution at 150 GPa is less than that at 100 GPa (figure 3(c)) as
result of the reduced formation volume (figure 3(d)). This effect is more pronounced for the
large Schottky and SiO2 pseudo-Schottky leading to a reduction in the difference in energy
between these and the MgO pseudo-Schottky from 111.6 and 215.9 kJ mol−1 using the lattice
energy to 102.9 and 208.9 kJ mol−1 once the PV term has been considered. This effect was
not observed in previous simulation studies as they considered constant volume simulations.

In summary the inclusion of the PV term in the defect formation energies leads to a
different picture of the pressure dependence. At low pressure the lattice energy increases
gradually while the PV term causes the enthalpy to increase more rapidly. At high pressure the
lattice energy increases rapidly while the reduction in the defect volume causes the enthalpy
to remain almost constant. Clearly the inclusion of the volume change and associated PV

energy term is very important in calculating the defect formation energy.



8434 G W Watson et al

(a)

(b)

(c)

(d)

Figure 3. Effect of pressure on (a) the Schottky formation lattice energy (b) the Schottky formation
enthalpy, (c) the Schottky formation volume and (d) the Schottky formation PV term.
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Table 4. Predicted lattice parameter and bulk modulus for CaSiO3 perovskite with the observed
lattice parameter of Mao et al (1989) and bulk modulus obtained from Mao’s Birch–Murnaghan
equation of state (K0 = 281, K ′

0 = 4).

Mao et al (1989) Predicted values

Lattice parameter Bulk modulus Lattice parameter Bulk modulus
Pressure (Å) (GPa) (Å) (GPa)

0 3.566 281 3.662 289.5
7.6 3.533 312 3.631 317.2

12.6 3.514 330 3.612 335.0
16 3.506 344 3.560 346.9
21.5 3.490 364 3.581 365.8
28.4 3.467 390 3.559 389.2
39.6 3.428 431 3.526 426.4
52 3.404 476 3.493 466.6
85.7 3.326 594 3.418 571.9

117.5 3.277 702 3.360 667.4
150 810 3.309 762.1

5. Calcium partitioning within the lower mantle

Simulations have been performed for cubic CaSiO3 perovskite up to 150 GPa at 300 K, with
the predicted lattice parameter and bulk modulus compared with Mao et al (1989) in table 4.
The pressure dependence of the structure is modelled well with the bulk modulus at very
high pressure deviating slightly from that of Mao. In our calculations CaSiO3 perovskite is
dynamically stable down to 0 GPa in agreement with the calculations of Sherman (1993),
Wentzcovitch et al (1995) and Warren et al (1998). This indicates that the cubic form is more
stable than a distorted perovskite (such as that adopted by MgSiO3 perovskite) although it does
not indicate that we would predict the structure to be observed at 0 GPa.

In addition to the tests on the P–V relationship of CaSiO3, we have performed simulations
on a range of materials, MgO, CaO, diopside, wollastonite and enstatite to verify the accuracy
of the potential models. We are primarily interested in calculating the effect of temperature and
pressure on the defect substitution energy of Ca within MgSiO3 perovskite. We have therefore
tested the potentials for the energetics of forming mixed Ca/Mg phases by using the lattice
energies to calculate two reaction energies,

2MgSiO3 + CaO → MgCaSi2O6 + MgO (1)

and

MgCaSi2O6 → MgSiO3 + CaSiO3. (2)

By comparing the reaction energies from the calculated lattice energies with those of the
experimental heats of formation we can estimate the magnitude of the errors we would expect
in calculating Ca solution in MgSiO3 perovskite. Using the lattice energies the reaction energy
for reaction (1) gave a reaction energy of −99.6 kJ mol−1 while using the heats of formation
from Berman (1988) gave rise to −74.9 kJ mol−1. For reaction (2) the agreement is even better
with the lattice energies giving +20.8 kJ mol−1 and the heats of formation +21.5 kJ mol−1.
These calculations give us confidence in the ability of the potential model to predict solution
energies of Ca within magnesium silicates and thus we have confidence in using it to predict
solution energies in MgSiO3 pv.
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Figure 4. The effect of pressure and temperature on the substitution energy of Ca in MgSiO3
perovskite.

To calculate whether Ca will dissolve in MgSiO3 or form its own phase we use the mass
action equation

exp

(−#G

RT

)
= �CaMgSiO3�

�CaCaSiO3�
where #G is the difference in substitutional energies for Ca in MgSiO3 and CaSiO3, the latter
of which in this case is zero and is therefore the solution energy of Ca in MgSiO3.

The solution free energies have been calculated as a function of both temperature (300–
5000 K) and pressure (10–150 GPa) and are shown in figure 4. At 300 K and 10 GPa the solution
energy is 816 kJ mol−1 and rises steadily as a function of pressure, reaching 1362 kJ mol−1.
At all temperatures the same trend is observed, with an increase of around 600 kJ mol−1

over the pressure range. For a given pressure the temperature reduces the free energy of
substitution. At 10 GPa the simulation at 5000 K produced imaginary frequencies, indicating
that the harmonic approximation had broken down. Between 300 K and 4000 K the formation
free energy reduces from 816 kJ mol−1 to 714 kJ mol−1. Similar trends with temperature are
observed at all pressures.

The effect of pressure was thus to increase the free energy of solution while temperature
reduced the free energy. Using the mass action equation we can calculate the thermodynamic
partition coefficient of Ca within the MgSiO3 perovskite phase as a function of temperature
and pressure. However, the substitution energies are so large that effectively all of the Ca will
prefer to form its own phase, indicating that CaSiO3 perovskite will be present within the lower
mantle.

Experimental observations generally show that there is a very limited solubility of Ca in
MgSiO3 (Irifune 1994, Ahmen-Zaid and Madon 1995) in agreement with our calculations;
however Liu (1987) reports a solid solution between CaSiO3 and CaMgSi2O6. It is has been
suggested that Liu’s results may have arisen from the formation of metastable quench products
from glassy starting materials (Mao et al 1989). Irifune (1994) showed that at pressures above
24 GPa pyrolite transformed with the majority of the Ca forming CaSiO3 perovskite. Ahmen-
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Zaid and Madon (1995) also found that at pressures between 40 and 50 GPa that CaSiO3

perovskite was the main Ca bearing mineral.
These experimental observations and simulation results, which predict that CaSiO3

perovskite will be stable throughout the lower mantle, indicate with the observation of
preferential uptake of trace elements that the material may be a store for these trace elements
within the lower mantle.

6. Conclusions

We have illustrated a method in which the errors associated with the overall charge of the
cell and defect–defect coulombic interactions within a periodic atomistic calculation can be
removed during the simulations rather than post hoc. This method allows the calculation of
both the free energy and volume of defect formation. We have demonstrated this method by
calculating the enthalpy of vacancy formation and Schottky formation in MgSiO3 perovskite.
The results indicate that pressure has a very large effect on the defect volume and that at high
pressure (>50 GPa) the reduction in the volume of the defects is so large that it leads to a
reduction in the enthalpy of formation.

In addition we have calculated the solution energy of Ca in MgSiO3 perovskite, which
clearly indicates that Ca will prefer to form is own CaSiO3 perovskite phase. This is important
because recent experiments have indicated that trace elements preferentially dissolve in CaSiO3

perovskite, which would make it a source for such elements within the lower mantle. Further
calculations are planned to investigate the partitioning of trace elements between CaSiO3 and
MgSiO3 perovskites at mantle conditions.
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